#' Fit Neural Network model
#'
#' @param .data Data frame or tibble with a response variable.
#' @param y_var String. Column name of the time series to be forecasted.
#' @param x_data Data frame. Design matrix to calculate predicted/forecast figures.
#' @param parameter List. Parameter to be used for estimation.
#'
#' @import forecast
#' @return data-frame
#' @export
#'
#' @examples
#' \dontrun{
#' get_neural_network()
#' }
get_neural_network <- function(.data, y_var, x_data = NULL, parameter = NULL){
if(is.null(attributes(.data)[["prescription"]]) == FALSE) {
prescription <- attributes(.data)[["prescription"]]
y_var <- prescription$y_var
date_var <- prescription$date_var
freq <- prescription$freq
na_exclude <- unique(c(prescription$key, y_var, date_var))
}
y_var_int <- ts(.data[[y_var]], frequency = freq) # maybe not optimal
model_fit <- nnetar(y = y_var_int)
# Output
.fit_output <- list(model = "neural_network"
, model_fit = model_fit
, y_var_pred = as.numeric(model_fit$fitted)
, parameter = as.numeric(unlist(str_extract_all(model_fit$method, "[0-9]{1,2}")
)
)
)
attr(.fit_output, "prescription") <- prescription
class(.fit_output) <- ".fit_output"
return(.fit_output)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.